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2-D Coherence Factor for Sidelobe and Ghost
Suppressions in Radar Imaging
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Abstract—The coherence factor (CF) is defined as the ratio
of coherent power to incoherent power received by the radar
aperture. The incoherent power is computed by the multi-antenna
receiver based on only the spatial variable. In this respect, it is
a one-dimensional (1-D) CF, and thereby the image sidelobes
in down-range cannot be effectively suppressed. We propose
a two-dimensional (2-D) CF by supplementing the 1-D CF by
an incoherent sum dealing with the frequency dimension. In
essence, we employ both spatial diversity and frequency diversity
which, respectively, enhance imaging quality in cross range
and range. Simulations and experimental results are provided
to demonstrate the performance advantages of the proposed
approach.

Index Terms—Coherence factor, sidelobes, ghosts, near-field,
radar imaging.

I. INTRODUCTION

RADAR imaging has wide application areas including
through-the-wall imaging [1], target scattering diagnosis

and recognition [2], and Earth remote sensing [3].
Most radar imaging approaches are based on the Born

approximation, which is a linearized model of the electromag-
netic (EM) scattering phenomena [4]. Linear models can be
solved using robust and computationally efficient algorithms.
However, linear models describe only direct scattering from
targets to radar, and neglect multiple scattering phenomena,
such as target-to-target and target-to-environment interactions
[5]. These multipaths have adverse effects on imaging quality.
They produce spurious targets as “ghosts” in the image scene,
thus, increasing clutter and false alarms [6]. On the other hand,
high sidelobes in the radar image could also be recognized as
spurious targets and lead to a severe decline in target detection
and classification [7].

In this context, and towards improving system perfor-
mance, many research efforts have been dedicated to multipath
suppression and exploitation [8], [9]. To achieve the latter,
geometrical information of main reflectors is used to map
the ghosts back to the true target position, thereby increasing
signal-to-clutter ratio at the target location [10]. In [11], virtual
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sensors stemming from specular wall reflections were used to
localize an indoor target utilizing only one physical sensor
deployment. Microwave images were reconstructed by com-
bining the multipath information as a prior with compressive
sensing in [12].

This work is focused on suppressing imaging ghosts and
target sidelobes. Approaches exploiting aspect-dependent char-
acteristics to suppress multipath ghosts by subaperture imaging
strategies were presented in [13], [14]. The total variation
constrained sparse reconstruction method was presented in
[15] to mitigate ghosts for detection of human behind walls.
A simple but powerful approach for enhanced radar imaging
is the coherence factor (CF) filtering that alleviates clutter by
suppressing its low-coherence features [6], [16]. The CF is
defined as the ratio of the coherent power received by the
radar aperture to the incoherent power, and it is calculated
for every position in the image scene. CF was first applied in
ultrasonic imaging [17], [18], and then successfully employed
in through-the-wall radar imaging [16].

At the target location, CF takes a unit value, signifying
that the coherent and non-coherent summations assume equal
values. However, considering a location where there is no
target, the coherent sum becomes much lower than the non-
coherent sum, yielding a small CF value. Therefore, ghosts
and sidelobes can be suppressed by the mere multiplication
of the radar image with the CF map. The latter comprises the
CFs at all locations. In essence, the CF utilizes angle diver-
sity, rendered by the multi-sensor configuration, to suppress
undesired image components.

However, the incoherent summation of CF is implemented
only along the array aperture, or the azimuth dimension,
specifically, the phase delays corresponding a presumed target
are adjusted prior to their summation. In this respect, the CF
can be used to attenuate image components along the cross-
range, but has minor effects on the suppression of sidelobes
along the range dimension. This calls for employing another
diversity in the frequency dimension to deal with this problem.

In this communication, we expand the incoherent summa-
tion in the original CF over the frequency dimension. Since we
use two types of diversities namely, angle and frequency, the
sidelobes and ghosts of low-coherence features will be better
suppressed compared with the original CF. This approach is
also applicable to the phase coherence factor (PCF) [19] –
another commonly used method to suppress undesired image
components [20]. It depends on the standard deviation of
the complex exponential function in regard to the phase
distribution of multiple antenna positions for an image pixel
[21].
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Fig. 1. Generalized MIMO imaging geometry.

The remainder of this communication is as follows. Section
II presents the formulation of the near-field radar imaging for
a generalized configuration. In Section III, we propose the 2-
D coherence factor. Numerical simulations and experimental
results are shown in Section IV. Finally, concluding remarks
are presented in Section V.

II. NEAR-FIELD RADAR IMAGING BY BP ALGORITHM

We consider a generalized radar imaging geometry with
multiple-input multiple-output (MIMO) array, as illustrated
in Fig. 1. The imaging system has M transmitters, which
illuminate the target g(x, y), and N receivers.

Under Born approximation, the scattered electromagnetic
(EM) wave is given by,

E(~rT, ~rR, f)=

∫∫
G

g(~r)e−j2πf
R(~r,~rT,~rR)

c dxdy, (1)

where f is the operating frequency, ~rT = (xT, yT) represents
the transmitter position, ~rR = (xR, yR) is the receiver position,
~r = (x, y) denotes the coordinates of the imaging scene, g(~r)
represents the scattering coefficients of the target, G represents
the imaging scene, c is the speed of EM wave in free space,
and R(~r, ~rT, ~rR) is the two-way distance from the transmitting
antenna to the target to the receiving antenna,

R(~r, ~rT, ~rR)

=
√

(x− xT)2 + (y − yT)2 +
√

(x− xR)2 + (y − yR)2

(2)

The forward model in (1) is linear. This means that only the
direct reflections from the scattering centers are considered.
The radar image can be reconstructed by the back-projection
(BP) algorithm, as shown by the following two steps:

y(~r, ~rT, ~rR) =

∫
f

E(~rT, ~rR, f)ej2πf
R(~r,~rT,~rR)

c fdf (3)

g(~r) =

∫
~rT

∫
~rR

y(~r, ~rT, ~rR)d~rTd~rR, (4)

Eq. (3) can be efficiently computed by an inverse fast Fourier
transform (IFFT) followed by an interpolation from the uni-
form grids to the grids corresponding to R(~r, ~rT, ~rR).

Transmitted signals are typically designed as step-frequency
EM waves. This implies that f is chosen as fi = f0 + i∆f ,
where f0 and ∆f are, respectively, the initial frequency and
frequency step size, and i = 0, 1, · · · , I − 1.

III. 2-D COHERENCE FACTOR

The coherence factor was first applied in ultrasonic imaging
[17], and then utilized in though-the-wall radar imaging [6],
[16] to enhance image quality. CF measures the ratio between
the total coherent power to the total incoherent power received
by the antenna aperture, and is expressed as [17],

CF(~r) =

∣∣∣∑M−1
m=0

∑N−1
n=0 ymn(~r)

∣∣∣2
MN

∑M−1
m=0

∑N−1
n=0 |ymn(~r)|2

, ~r ∈ G (5)

where ymn(~r) represents y(~r, ~rTm
, ~rRn

) in (3). Notice that the
numerator in (5) is the image g(~r) in (4).

The values of CF vary from zero to one and provide
information about the low- and high-coherence regions in
the image scene. The CF enhanced image is obtained by
multiplication of the BP image with the relevant CF map, i.e.,

gCF(~r) = CF(~r) · g(~r) (6)

According to (5) and (6), features with low coherence, such
as ghosts and sidelobes, will be suppressed or significantly
attenuated.

From the perspective of tomography [22], the radar image
is obtained by coherent summation, which amounts to first
correcting the phase delays from the target scattering centers,
then summing the corrected EM waves along all array spatial
channels. These two steps correspond to equations (3) and (4),
respectively. At the target location, the phase delays induced
by wave propagation are fully corrected. Thus, the coherent
sum is responsible for providing MN gain at the target angular
location which represents the center of the main lobe of the
point spread function. At other positions, however, where there
are no targets, the different residual phases produce positive
and negative terms in the summation, giving rise to ghosts and
sidelobes of the point spread function.

We maintain that the term ymn(~r) represents the downrange
profile mapping at a 2-D image scene, i.e., the phase delays
induced by the wave propagation are corrected for each
transmitting and receiving antenna-pair. And the range profile
ymn(~r) for the m-th transmitter and n-th receiver is illustrated
by an arc defined by their distance separation. At the target
location, the incoherent summation over all array elements
(antenna pairs) should be equal to the square of the coherent
sum, i.e., rendering the corresponding value of CF equal
to one. However, for other points along the arc traces, the
incoherent sum remains high, while the coherent sum will be
reduced. This results in smaller values of CF which would
then suppress ghosts and sidelobes upon multiplication of the
radar image.

However, the incoherent sum in the denominator only incor-
porates the aperture direction, since according to (3), ymn(~r)
has already coherently compensated for the phase delays along
the frequency variable. Thus, we can infer that the CF values
in the range dimension will be larger than those in the azimuth
dimension.

We give a simple example to show the CF map of a
point target image in Fig. 2, which represents a turntable
inverse synthetic aperture (ISAR) radar imaging result. The
denominator of CF is shown in Fig. 3(a). Clearly, large
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Fig. 2. Imaging result of a point target by BP algorithm.

(a) (b)

Fig. 3. (a) The denominator of the original CF, and (b) the related CF map.

Fig. 4. The original CF enhanced image.

values are located along the azimuth direction due to the
incoherent sum over the aperture. This leads to smaller CF
values along the azimuth direction and larger values along
the range direction, as illustrated in Fig. 3(b). The enhanced
radar image is shown in Fig. 4, which is consistent with the
above analysis. The sidelobes in the range dimension are much
higher than those in the azimuth dimension.

To improve image quality in range, we can introduce
another incoherent sum over the frequency dimension with the
goal of suppressing range sidelobes. To invoke the frequency
dependency, we express the BP algorithm as follows,

y(~r, f) =

∫
~rT

∫
~rR

E(~rT, ~rR, f)ej2πf
R(~r,~rT,~rR)

c d~rTd~rR (7)

g(~r) =

∫
f

y(~r, f)fdf, (8)

(a) (b)

Fig. 5. (a) The denominator of the CFf with incoherent sum in frequency
dimension, and (b) the related CFf map.

Fig. 6. The CFf enhanced image.

Fig. 7. The 2-D CF enhanced image.

Thus, the CF with incoherent sum over the different fre-
quencies, denoted as CFf , is given by,

CFf (~r) =

∣∣∣∑I−1
i=0 yi(~r)

∣∣∣2
I
∑I−1
i=0 |yi(~r)|

2
, ~r ∈ G (9)

where yi(~r) represents y(~r; fi) in (7) with f = fi. It is
noted that the numerators in (9) and (5) assume equal values
since they both represent the same near-field radar images
reconstructed by coherent summation after compensating for
the phase delays.

Note that the incoherent summation in (9) is performed in
the frequency dimension, enabling effective suppression in the
range sidelobes. However, in this case, the sidelobes along the
cross-range remain pronounced. In essence, the role of CFf

is opposite to that of CF. The CFf map, its denominator, and
the corresponding enhanced radar image are demonstrated in
Figs. 5 and 6.
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In order to reap the benefits of both coherence factors, we
introduce the 2-D CF which would effectively suppress the
sidelobes in the azimuth and range dimensions simultaneously.
That is,

gCF(~r) = CF2D(~r) · g(~r) (10)

where CF2D(~r) = CF(~r) · CFf (~r).
The 2-D CF enhanced image is shown in Fig. 7. Clearly,

the sidelobes along the two dimensions are vividly suppressed.
The effect of CF, CFf , and CF2D on ghost suppression is
analogous to that on the target sidelobes, and will be shown
in Section IV.

Next, we carry the same concept of combined spatial-
frequency factor to another commonly used tool for clutter
suppression – phase coherence factor (PCF) defined as [19],

PCF(~r) = 1− std
(
ej∠Yazi

~r

)
∠Yazi

~r ={∠ymn(~r),m=0, 1, · · · ,M − 1, n=0, 1, · · · , N − 1}
(11)

where ∠ymn(~r) denotes the phase of ymn(~r). The stan-
dard deviation of the complex exponential term is given by
std
(
ej∠Yazi

~r

)
=
√

std2(cos∠Yazi
~r ) + std2(sin∠Yazi

~r ).
Note that PCF is defined as a function of the phase disper-

sion. When ∠Yθ
~r distributes uniformly in the range [−π, π],

the standard deviation of the exponential term is unity and
PCF reaches zero. Conversely, if all the phases are equal,
the standard deviation is zero and PCF becomes unity. In
between, PCF takes much smaller values than one for out-
of-focus ghosts and sidelobes [19].

Similar to CF, PCF is also only defined along the aperture
direction, and as such, becomes ineffective for range sidelobe
suppression. We can define a new PCF by calculating standard
deviation in the frequency dimension as,

PCFf (~r) = 1− std
(
ej∠Yf

~r

)
∠Yf

~r = {∠yi(~r), i = 0, 1, · · · , I − 1} (12)

where yi(~r) denotes the image obtained at the ith frequency
described in (7).

Thus, the corresponding 2-D PCF can be expressed as,

PCF2D(~r) = PCF(~r) · PCFf (~r) (13)

and the 2-D PCF enhanced image is given by,

gPCF(~r) = PCF2D(~r) · g(~r). (14)

Figs. 8(a) and (b) show the original PCF enhanced image
and the PCFf enhanced image, respectively. The 2-D PCF
enhanced result is demonstrated in Fig. 9.

IV. SIMULATIONS AND EXPERIMENTAL RESULTS

This section shows the performance improvement offered
by the 2-D CF and PCF in suppressing ghosts and sidelobes,
using both simulations and real data.

(a) (b)

Fig. 8. Enhanced images by (a) the original PCF, and (b) the PCFf with
standard deviation in frequency dimension.

Fig. 9. The 2-D PCF enhanced image.
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z
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z
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Receiver

Fig. 10. SIMO imaging geometry.

A. Simulation results

For multipath simulations, we employ ANSYS HFSS, which
is a finite-element method (FEM)-based 3-D electromagnetic
field simulator for computing the scattered waves. To reduce
simulation time, we consider a single input multiple output
(SIMO) imaging model, as illustrated in Fig. 10. There are
three targets in the scene. The transmitting antenna is located
in the middle of array, whereas the receiving antennas are
placed on an arc with a radius of R0 = 10m. The simulation
parameters are given in Table I.

Fig. 11 shows the imaging result by the BP algorithm. It is
clear that there are two spurious targets labeled as ghosts and
shown by red circles. Also, sidelobes are very pronounced both

TABLE I
SIMULATION PARAMETERS FOR FULL DATA SET

Parameters Values
Distance R0 10 m
Start frequency 8 GHz
Stop frequency 9 GHz
Number of frequency steps 64
Aperture angle 8◦

Number of receiving antennas 81
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Fig. 11. Imaging result by BP algorithm.

(a) (b)

Fig. 12. Enhanced images by (a) the original CF, and (b) the CFf with
incoherent sum in frequency dimension.

in the range and azimuth dimensions. The enhanced images by
the original CF and the CFf , defined in (9), are shown in Figs.
12(a) and (b), respectively. Note that the ghosts are reasonably
suppressed by both factors. However, as evident in Fig. 12(a),
the original CF is much less effective in suppressing the
sidelobes along the range dimension compared to the azimuth
dimension. The opposite is true for CFf , as demonstrated in
Fig. 12(b) .

The proposed 2-D CF enhanced image is shown in Fig. 13.
The sidelobes along the two dimensions are both considerably
suppressed. Further, the 2-D CF yields better ghost suppression
by more than 5 dB compared to that offered by the original
CF.

Figs. 14 and 15 demonstrate the imaging results by the
original PCF, the proposed PCF with standard deviation in
the frequency dimension, and the 2-D PCF. The same relative
improvement in image quality is evident. Comparing Figs.
13 and 15, one can observe that the PCF based approaches
perform slightly better than the CF related approaches.

B. Experimental results

In addition to simulations, we use an X-band radar to verify
the performance of the proposed method. The radar was fixed
on a support frame and the target under test was put on a
turntable, as shown in Fig. 16.

Fig. 17 shows the imaging results by the BP algorithm.
The ghosts induced by multiple target-to-target reflections are
labeled by red circles in the figure. The enhanced image by
the original CF is given in Fig. 18, and that of the 2-D CF is
shown in Fig. 19. In the latter, the two dimensional sidelobes,
as well as ghosts, are clearly suppressed. Here, we do not
present the intermediate results of CFf .

Fig. 13. The 2-D CF enhanced image.

(a) (b)

Fig. 14. Enhanced images by (a) the original PCF, and (b) the PCFf with
standard deviation in the frequency dimension.

Fig. 15. The 2-D PCF enhanced image.

(a) (b)

Fig. 16. The experimental setup. (a) The measurement radar and (b) target
under test: three fire extinguishers.

Figs. 20 and 21 show the corresponding imaging results by
the original PCF and the proposed 2-D PCF.

From the above simulations and the real data experiments,
the 2-D CF and 2-D PCF lead to higher imaging quality
compared to 1-D based suppression techniques.
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Fig. 17. Imaging result by BP algorithm.

Fig. 18. The original CF enhanced image.

Fig. 19. The 2-D CF enhanced image.

Fig. 20. The original PCF enhanced image.

V. CONCLUSIONS

This communication proposed a 2-D coherence factor (in-
cluding phase coherence factor) filtering approach for near-
field radar imaging through introducing another incoherent

Fig. 21. The 2-D PCF enhanced image.

summation in the frequency dimension. The incoherent sum-
mation corresponds to diversity of the target spatial spectrum.
Due to the use of 2-D diversities, i.e., the antenna diversity
and the frequency diversity, the 2-D CF can provide more
suppression of sidelobes and ghosts compared with the original
versions. Simulations and experimental results demonstrated
that the proposed approach improves over the original CF or
PCF when considering the suppression of sidelobes and ghosts.
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